bioRxiv | 2021

A fully adapted headstage for electrophysiological experiments with custom and scalable electrode arrays to record widely distributed brain regions

 
 
 
 
 
 

Abstract


Electrophysiological recordings lead amongst the techniques that aim to investigate the dynamics of neural activity sampled from large neural ensembles. However, the financial costs associated with the state-of-the-art technology used to manufacture probes and multi-channel recording systems make these experiments virtually inaccessible to small laboratories, especially if located in developing countries. Here, we describe a new method for implanting several tungsten electrode arrays, widely distributed over the brain. Moreover, we designed a headstage system, using the Intan® RHD2000 chipset, associated with a connector (replacing the expensive commercial Omnetics connector), that allows the usage of disposable and cheap cranial implants. Our results showed high-quality multichannel recording in freely moving animals (detecting local field, evoked responses and unit activities) and robust mechanical connections ensuring long-term continuous recordings. Our project represents an open source and inexpensive alternative to develop customized extracellular records from multiple brain regions.

Volume None
Pages None
DOI 10.1101/2021.04.06.438732
Language English
Journal bioRxiv

Full Text