bioRxiv | 2021

Working Memory Performance after Daily Caffeine Intake: Compromised Performance and Reduced Hippocampal Activity

 
 
 
 
 
 
 
 

Abstract


Neuroprotective effects of caffeine have been frequently reported in the context of disease and cognitive dysfunction as well as in epidemiological studies in humans. However, evidence on caffeine effects on neural and memory functions during daily intake in a healthy cognitive state remains scarce. This randomized double-blind placebo-controlled crossover study investigated working memory functions by N-back tasks and functional magnetic resonance imaging (fMRI) after daily caffeine intake compared to a placebo baseline and to acute caffeine withdrawal in 20 young healthy volunteers. Each volunteer was given 3 times 150 mg caffeine for 10 days in the daily caffeine condition, 3 times 150 mg mannitol for 10 days in the placebo condition, and 9-day caffeine plus 1-day mannitol in the acute withdrawal condition. During the 10th day, participants performed 4 N-back sessions (two loads each: 0- and 3-back) under controlled laboratory conditions. During the 4th session of N-Back (i.e. at 5.5 h, 36.5 h and > 10 days after the last caffeine intake in the caffeine, withdrawal, and placebo condition, respectively) we assessed blood-oxygen-level-dependent (BOLD) activity. During the entire 10th day, in 0-back tasks, we observed longer reaction times (RTs) in the withdrawal compared to the placebo (Cohen’s d = 0.7) and caffeine condition (Cohen’s d = 0.6), but no significant effects of conditions on error rates. In contrast, in 3-back tasks (controlled for 0-back), the RTs in the caffeine condition were longer compared to placebo (Cohen’s d = 0.6) and withdrawal (Cohen’s d = 0.5). Error rates were higher during both caffeine and withdrawal conditions compared to placebo (Cohen’s d of both contrasts = 0.4). Whole-brain analyses on fMRI data did not reveal significant condition-dependent differences in activities between task loads. Across task loads, however, we observed a reduced hippocampal activation (Cohen’s d = −1.3) during the caffeine condition compared to placebo, while no significant difference in brain activities between withdrawal and placebo conditions. Taken together, the worse working memory function and the hippocampal hypoactivation implicate a potential detrimental effect of daily caffeine intake on neurocognitive functions of healthy adults. Moreover, they echo the hippocampal volumetric reduction reported previously in the same volunteers. Lastly, acute withdrawal from daily caffeine intake impairs both low-order cognitive processes and working memory performance. Taking earlier studies on acute caffeine effects into account, our findings indicate that daily caffeine intake elicits a dynamic change in cerebral activities during the course of repeated consumption, with unknown consequences in the long run.

Volume None
Pages None
DOI 10.1101/2021.04.19.440520
Language English
Journal bioRxiv

Full Text