bioRxiv | 2021

Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water use efficiency-related genes

 
 
 
 
 
 
 
 
 
 

Abstract


Stomata allow CO2 uptake by leaves for photosynthetic assimilation at the cost of water vapor loss to the atmosphere. The opening and closing of stomata in response to fluctuations in light intensity regulate CO2 and water fluxes and are essential to maintenance of water-use efficiency (WUE). However, little is known about the genetic basis for natural variation in stomatal movement, especially in C4 crops. This is partly because the stomatal response to a change in light intensity is difficult to measure at the scale required for association studies. High-throughput thermal imaging was used to bypass the phenotyping bottleneck and assess 10 traits describing stomatal conductance (gs) before, during and after a stepwise decrease in light intensity for a diversity panel of 659 sorghum accessions. Results from thermal imaging significantly correlated with photosynthetic gas-exchange measurements. gs traits varied substantially across the population and were moderately heritable (h2 up to 0.72). An integrated genome-wide and transcriptome-wide association study (GWAS/TWAS) identified candidate genes putatively driving variation in stomatal conductance traits. Of the 239 unique candidate genes identified with greatest confidence, 77 were orthologs of Arabidopsis genes related to functions implicated in WUE, including stomatal opening/closing (24 genes), stomatal/epidermal cell development (35 genes), leaf/vasculature development (12 genes), or chlorophyll metabolism/photosynthesis (8 genes). These findings demonstrate an approach to finding genotype-to-phenotype relationships for a challenging trait as well as candidate genes for further investigation of the genetic basis of WUE in a model C4 grass for bioenergy, food, and forage production. One sentence summary Rapid phenotyping of 659 accessions of Sorghum bicolor revealed heritable stomatal responses to a decrease in light. GWAS/TWAS was used to identify candidate genes influencing traits important to WUE.

Volume None
Pages None
DOI 10.1101/2021.05.06.442962
Language English
Journal bioRxiv

Full Text