bioRxiv | 2021

Suppression of Global Protein Translation in SARS-CoV-2 Infection

 
 
 
 
 
 

Abstract


The relationship of SARS-CoV-2 with the host translation remains largely unexplored. Using polysome profiling of SARS-CoV-2 infected Caco2 cells, we here demonstrate that the virus induces a strong suppression of global translation by 48 hours of infection. Heavy polysome fractions displayed substantial depletion in the infected cells, indicating the loss of major translational activities in them. Further assessment of the major pathways regulating translation in multiple permissive cell lines revealed strong eIF4E dephosphorylation accompanied by Mnk1 depletion and ERK1/2 dephosphorylations. p38MAPK showed consistent activation and its inhibition lowered viral titers, indicating its importance in viral survival. mTORC1 pathway showed the most profound inhibition, indicating its potential contribution to the suppression of global translation associated with the infection. Pharmacological activation of mTORC1 caused a drop in viral titers while inhibition resulted in higher viral RNA levels, confirming a critical role of mTORC1 in regulating viral replication. Surprisingly, the infection did not cause a general suppression of 5’-TOP translation, as evident from the continued expression of ribosomal proteins. Our results collectively indicate that the differential suppression of mTORC1 might allow SARS-CoV-2 to hijack translational machinery in its favor and specifically target a set of host mRNAs.

Volume None
Pages None
DOI 10.1101/2021.05.08.443207
Language English
Journal bioRxiv

Full Text