bioRxiv | 2021

Polo-like kinase 2 inhibition reduces serine-129 phosphorylation of physiological nuclear alpha-synuclein but not of the aggregated alpha-synuclein

 
 
 
 
 
 
 
 
 

Abstract


Accumulation of aggregated alpha-synuclein (α-syn) is believed to play a pivotal role in the pathophysiology of Parkinson’s disease (PD) and other synucleinopathies. α-Syn is a key constituent protein of Lewy pathology, and α-syn phosphorylated at serine-129 (pS129) constitutes more than 90% of α-syn in Lewy bodies and hence, it is used extensively as a pathological marker for the aggregated form of α-syn. However, the exact role of pS129 remains controversial as well as the kinase(s) responsible for the phosphorylation. In this study, we investigated the effect of Polo-like kinase 2 (PLK2) inhibition on formation of pS129 using ex-vivo organotypic brain slice model of synucleinopathy. Our data demonstrated that PLK2 inhibition has no effect on α-syn aggregation, pS129 or inter-neuronal spreading of the aggregated α-syn seen in the organotypic slices. Instead, PLK2 inhibition reduced the soluble nuclear pS129 level confined in the nuclei. The same finding was replicated in an in-vivo mouse models of templated α-syn aggregation and human dopaminergic neurons, suggesting that PLK2 is more likely to be involved in S129 phosphorylation of soluble non-pathology related fraction of α-syn. We also demonstrated that reduction of nuclear pS129 but not the aggregates specific pS129 following PLK2 inhibition for a short time before sample collection improves the signal to noise ratio when quantifying pS129 aggregate pathology.

Volume None
Pages None
DOI 10.1101/2021.05.21.445104
Language English
Journal bioRxiv

Full Text