bioRxiv | 2021

Dimerization of SARS-CoV-2 nucleocapsid protein affects sensitivity of ELISA based diagnostics of COVID-19

 
 
 
 
 
 
 
 

Abstract


Diagnostics has played a significant role in effective management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nucleocapsid protein (N protein) is the primary antigen of the virus for development of sensitive diagnostic assays. Thus far, limited knowledge exists about the antigenic properties of the N protein. In this paper, we demonstrate the significant impact of dimerization of SARS-CoV-2 nucleocapsid protein on sensitivity of enzyme-linked immunosorbent assay (ELISA) based diagnostics of COVID-19. The expressed purified protein from E.coli consists of two forms, dimeric and monomeric forms, which have been further characterized by biophysical and immunological means. Indirect ELISA indicated elevated susceptibility of the dimeric form of the nucleocapsid protein for identification of protein-specific monoclonal antibody as compared to the monomeric form of the protein. These findings have also been confirmed with the modelled structure of monomeric and dimeric nucleocapsid protein via HHPred software and its solvent accessible surface area, which indicates higher stability and antigenicity of the dimeric type as compared to the monomeric form. It is evident that use of the dimeric form will increase the sensitivity of the current nucleocapsid dependent ELISA for rapid COVID-19 diagnostic. Further, the results indicate that monitoring and maintaining of the monomerdimer composition is critical for accurate and robust diagnostics. Graphical abstract

Volume None
Pages None
DOI 10.1101/2021.05.23.445305
Language English
Journal bioRxiv

Full Text