bioRxiv | 2021

Evolutionary analysis of DNA methyltransferases in microeukaryotes: Insights from the model diatom Phaeodactylum tricornutum

 
 
 
 
 
 

Abstract


Cytosine DNA methylation is an important epigenetic mark in eukaryotes that is involved in the transcriptional control of mainly transposable elements in mammals, plants, and fungi. Eukaryotes encode a diverse set of DNA methyltransferases that were iteratively acquired and lost during evolution. The Stramenopiles-Alveolate-Rhizaria (SAR) lineages are a major group of ecologically important marine microeukaryotes that include the main phytoplankton classes such as diatoms and dinoflagellates. However, little is known about the diversity of DNA methyltransferases and their role in the deposition and maintenance of DNA methylation in microalgae. We performed a phylogenetic analysis of DNA methyltransferase families found in marine microeukaryotes and show that they encode divergent DNMT3, DNMT4, DNMT5 and DNMT6 enzymes family revisiting previously established phylogenies. Furthermore, we reveal a novel group of DNMTs with three classes of enzymes within the DNMT5 family. Using a CRISPR/Cas9 strategy we demonstrate that the loss of the DNMT5 gene correlates with a global depletion of DNA methylation and overexpression of transposable elements in the model diatom Phaeodactylum tricornutum. The study provides a pioneering view of the structure and function of a DNMT family in the SAR supergroup.

Volume None
Pages None
DOI 10.1101/2021.06.11.447926
Language English
Journal bioRxiv

Full Text