bioRxiv | 2021

Enviromic-based Kernels Optimize Resource Allocation with Multi-trait Multi-environment Genomic Prediction for Tropical Maize

 
 
 
 
 
 

Abstract


Genomic prediction (GP) success is directly dependent on establishing a training population, where incorporating envirotyping data and correlated traits may increase the GP accuracy. Therefore, we aimed to design optimized training sets for multi-trait for multi-environment trials (MTMET). For that, we evaluated the predictive ability of five GP models using the genomic best linear unbiased predictor model (GBLUP) with additive + dominance effects (M1) as the baseline and then adding genotype by environment interaction (G × E) (M2), enviromic data (W) (M3), W+G × E (M4), and finally W+G × W (M5), where G × W denotes the genotype by enviromic interaction. Moreover, we considered single-trait multi-environment trials (STMET) and MTMET for three traits: grain yield (GY), plant height (PH), and ear height (EH), with two datasets and two cross-validation schemes. Afterward, we built two kernels for genotype by environment by trait interaction (GET) and genotype by enviromic by trait interaction (GWT) to apply genetic algorithms to select genotype:environment:trait combinations that represent 98% of the variation of the whole dataset and composed the optimized training set (OTS). Using OTS based on enviromic data, it was possible to increase the response to selection per amount invested by 142%. Consequently, our results suggested that genetic algorithms of optimization associated with genomic and enviromic data efficiently design optimized training sets for genomic prediction and improve the genetic gains per dollar invested.

Volume None
Pages None
DOI 10.1101/2021.06.11.448049
Language English
Journal bioRxiv

Full Text