bioRxiv | 2021

Bacterial response to spatial gradients of algal-derived nutrients in a porous microplate

 
 
 
 
 
 

Abstract


Photosynthetic microalgae are responsible for 50% of the global atmospheric CO2 fixation into organic matter and hold potential as a renewable bioenergy source. Their metabolic interactions with the surrounding microbial community (the algal microbiome) play critical roles in carbon cycling, but due to methodological limitations, it has been challenging to examine how community is developed by spatial proximity to their algal host. Here we introduce a hydrogel-based porous microplate to co-culture algae and bacteria, where metabolites are constantly exchanged between the microorganisms while maintaining physical separation. In the microplate we found that the diatom Phaeodactylum tricornutum accumulated to cell abundances ~20 folds higher than under normal batch conditions due to constant replenishment of nutrients through the hydrogel. We also demonstrate that algal-associated bacteria, both single isolates and complex communities, responded to inorganic nutrients away from their host as well as organic nutrients originating from the algae in a spatially predictable manner. These experimental findings coupled with a mathematical model suggest that host proximity and algal culture growth phase impact bacterial community development in a taxon-specific manner through organic and inorganic nutrient availability. Our novel system presents a useful tool to investigate universal metabolic interactions between microbes in aquatic ecosystems.

Volume None
Pages None
DOI 10.1101/2021.06.23.449330
Language English
Journal bioRxiv

Full Text