bioRxiv | 2021

Macroscale structural changes of thylakoid architecture during high light acclimation in Chlamydomonas reinhardtii

 
 
 

Abstract


Photoprotection mechanisms are ubiquitous among photosynthetic organisms. The photoprotection capacity of the green alga Chlamydomonas reinhardtii is correlated with protein levels of stress-related light-harvesting complex (LHCSR) proteins, which are strongly induced by high light (HL). However, the dynamic response of overall thylakoid structure during acclimation to growth in HL has not been characterized. Here, we combined live-cell super-resolution microscopy and analytical membrane subfractionation to investigate macroscale structural changes of thylakoid membranes during HL acclimation in C. reinhardtii. Subdiffraction-resolution bioimaging revealed that overall thylakoid structures became thinned and shrunken during HL acclimation. The stromal space around the pyrenoid also became enlarged. Analytical density-dependent membrane fractionation indicated that the structural changes were partly a consequence of membrane unstacking. The analysis of both an LHCSR loss-of-function mutant, npq4 lhcsr1, and a regulatory mutant that over-expresses LHCSR, spa1-1, showed that structural changes occurred independently of LHCSR protein levels, demonstrating that LHCSR was neither necessary nor sufficient to induce the thylakoid structural changes associated with HL acclimation. In contrast, stt7-9, a mutant lacking a kinase of major light-harvesting antenna proteins, had a distinct thylakoid structural response during HL acclimation relative to all other lines tested. Thus, while LHCSR and the antenna protein phosphorylation are core features of HL acclimation, it appears that only the latter acts as a determinant for thylakoid structural rearrangements. These results indicate that two independent mechanisms occur simultaneously to cope with HL conditions. Possible scenarios for HL-induced thylakoid structural changes are discussed.

Volume None
Pages None
DOI 10.1101/2021.06.26.450046
Language English
Journal bioRxiv

Full Text