bioRxiv | 2021

Population-level inference for home-range areas



Home-range estimates are a common product of animal tracking data, as each range informs on the area needed by a given individual. Population-level inference on home-range areas—where multiple individual home-ranges are considered to be sampled from a population—is also important to evaluate changes over time, space, or covariates, such as habitat quality or fragmentation, and for comparative analyses of species averages. Population-level home-range parameters have traditionally been estimated by first assuming that the input tracking data were sampled independently when calculating home ranges via conventional kernel density estimation (KDE) or minimal convex polygon (MCP) methods, and then assuming that those individual home ranges were measured exactly when calculating the population-level estimates. This conventional approach does not account for the temporal autocorrelation that is inherent in modern tracking data, nor for the uncertainties of each individual home-range estimate, which are often large and heterogeneous. Here, we introduce a statistically and computationally efficient framework for the population-level analysis of home-range areas, based on autocorrelated kernel density estimation (AKDE), that can account for variable temporal autocorrelation and estimation uncertainty. We apply our method to empirical examples on lowland tapir (Tapirus terrestris), kinkajou (Potos flavus), white-nosed coati (Nasua narica), white-faced capuchin monkey (Cebus capucinus), and spider monkey (Ateles geoffroyi), and quantify differences between species, environments, and sexes. Our approach allows researchers to more accurately compare different populations with different movement behaviors or sampling schedules, while retaining statistical precision and power when individual home-range uncertainties vary. Finally, we emphasize the estimation of effect sizes when comparing populations, rather than mere significance tests.

Volume None
Pages None
DOI 10.1101/2021.07.05.451204
Language English
Journal bioRxiv

Full Text