bioRxiv | 2021

Phylogenetic profiling suggests early origin of the core subunits of Polycomb Repressive Complex 2 (PRC2)

 
 
 
 

Abstract


Polycomb Repressive Complex 2 (PRC2) is involved in establishing transcriptionally silent chromatin states through its ability to methylate lysine 27 of histone H3 by the catalytic subunit Enhancer of zeste [E(z)]. Polycomb group (PcG) proteins play a crucial role in the maintenance of cell identity and in developmental regulation. Previously, the diversity of PRC2 subunits within some eukaryotic lineages has been reported and its presence in early eukaryotic evolution has been hypothesized. So far however, systematic survey of the presence of PRC2 subunits in species of all eukaryotic lineages is missing. Here, we report the diversity of PRC2 core subunit proteins in different eukaryotic supergroups with emphasis on the early-diverged lineages and explore the molecular evolution of PRC2 subunits by phylogenetics. In detail, we investigate the SET-domain protein sequences and their evolution across the four domains of life and particularly focus on the structural diversity of the SET-domain subfamily containing E(z), the catalytic subunit of PRC2. We show that PRC2 subunits are already present in early eukaryotic lineages, strengthening the support for PRC2 emergence prior to diversification of eukaryotes. We identify a common presence of E(z) and ESC, suggesting that Su(z)12 may have emerged later and/or may be dispensable from the evolutionarily conserved functional core of PRC2. Furthermore, our results broaden our understanding of the E(z) evolution within the SET-domain protein family, suggesting possibilities of function evolution. Through this, we shed light on a possible emerging point of the PRC2 and the evolution of its function in eukaryotes.

Volume None
Pages None
DOI 10.1101/2021.07.16.452543
Language English
Journal bioRxiv

Full Text