bioRxiv | 2021

Direct and indirect interactions promote complexes of the lipoprotein LbcA, the CtpA protease and its substrates, and other cell wall proteins in Pseudomonas aeruginosa

 
 

Abstract


The Pseudomonas aeruginosa lipoprotein LbcA was discovered because it copurified with and promoted the activity of CtpA, a carboxyl-terminal processing protease (CTP) required for type III secretion system function, and for virulence in a mouse model of acute pneumonia. In this study we explored the role of LbcA by determining its effect on the proteome and its participation in protein complexes. lbcA and ctpA null mutations had strikingly similar effects on the proteome, suggesting that facilitating CtpA might be the most impactful role of LbcA in the bacterial cell. Independent complexes containing LbcA and CtpA, or LbcA and substrate, were isolated from P. aeruginosa cells, indicating that LbcA facilitates proteolysis by recruiting the protease and its substrates independently. An unbiased examination of proteins that copurified with LbcA revealed an enrichment for proteins associated with the cell wall. One of these copurification partners was found to be a new CtpA substrate, and the first substrate that is not a peptidoglycan hydrolase. Many of the other LbcA copurification partners are known or predicted peptidoglycan hydrolases. However, some of these LbcA copurification partners were not cleaved by CtpA, and an in vitro assay revealed that while CtpA and all of its substrates bound to LbcA directly, these non-substrates did not. Subsequent experiments suggested that the non substrates might co-purify with LbcA by participating in multi-enzyme complexes containing LbcA-binding CtpA substrates. IMPORTANCE Carboxyl-terminal processing proteases (CTPs) are widely conserved and associated with the virulence of several bacteria, including CtpA in Pseudomonas aeruginosa. CtpA copurifies with the uncharacterized lipoprotein, LbcA. This study shows that the most impactful role of LbcA might be to promote CtpA-dependent proteolysis, and that it achieves this as a scaffold for CtpA and its substrates. It also reveals that LbcA copurification partners are enriched for cell wall-associated proteins, one of which is a novel CtpA substrate. Some of the other LbcA copurification partners are not cleaved by CtpA, but might copurify with LbcA because they participate in multi-enzyme complexes containing CtpA substrates. These findings are important, given the links between CTPs, their associated proteins, peptidoglycan remodeling, and virulence.

Volume None
Pages None
DOI 10.1101/2021.07.29.454410
Language English
Journal bioRxiv

Full Text