bioRxiv | 2021

Opposing roles of p38α-mediated phosphorylation and arginine methylation in driving TDP-43 proteinopathy

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder typically characterized by insoluble inclusions of hyperphosphorylated TDP-43. The mechanisms underlying toxic TDP-43 accumulation are not understood. Persistent activation of p38 mitogen-activated protein kinase (MAPK) is implicated in ALS. However, it is unclear how p38 MAPK affects TDP-43 proteinopathy. Here, we demonstrate that inhibition of p38α MAPK reduces pathological TDP-43 phosphorylation, aggregation, cytoplasmic mislocalization, and neurotoxicity. We establish that p38α MAPK phosphorylates TDP-43 at pathological serine 409/410 (S409/S410) and serine 292 (S292), which reduces TDP-43 liquid-liquid phase separation (LLPS) but allows pathological TDP-43 aggregation. Moreover, we show that protein arginine methyltransferase 1 methylates TDP-43 at R293. Importantly, S292 phosphorylation reduces R293 methylation, and R293 methylation reduces S409/S410 phosphorylation. R293 methylation permits TDP-43 LLPS and reduces pathological TDP-43 aggregation. Thus, strategies to reduce p38α-mediated TDP-43 phosphorylation and promote R293 methylation could have therapeutic utility for ALS and related TDP-43 proteinopathies.

Volume None
Pages None
DOI 10.1101/2021.08.04.455154
Language English
Journal bioRxiv

Full Text