bioRxiv | 2021

Nuclear RNA binding regulates TDP-43 nuclear localization and passive nuclear export

 
 
 
 
 
 
 

Abstract


Nuclear clearance of the DNA/RNA-binding protein TDP-43 is a pathologic hallmark of amyotrophic lateral sclerosis and frontotemporal dementia that remains unexplained. Moreover, our current understanding of TDP-43 nucleocytoplasmic shuttling does not fully explain the predominantly nuclear localization of TDP-43 in healthy cells. Here, we used permeabilized and live-cell models to investigate TDP-43 nuclear export and the role of RNA in TDP-43 localization. We show that TDP-43 nuclear efflux occurs in low-ATP conditions and independent of active mRNA export, consistent with export by passive diffusion through nuclear pore channels. TDP-43 nuclear residence requires binding to GU-rich nuclear intronic pre-mRNAs, based on the induction of TDP-43 nuclear efflux by RNase and GU-rich oligomers and TDP-43 nuclear retention conferred by pre-mRNA splicing inhibitors. Mutation of TDP-43 RNA recognition motifs disrupts TDP-43 nuclear accumulation and abolishes transcriptional blockade-induced TDP-43 nuclear efflux, demonstrating strict dependence of TDP-43 nuclear localization on RNA binding. Thus, the nuclear abundance of GU-rich intronic pre-mRNAs, as dictated by the balance of transcription and pre-mRNA processing, regulates TDP-43 nuclear sequestration and availability for passive nuclear export.

Volume None
Pages None
DOI 10.1101/2021.08.24.457459
Language English
Journal bioRxiv

Full Text