bioRxiv | 2021

Sufu regulation of Hedgehog signaling in P19 cells is required for proper glial cell differentiation

 
 
 

Abstract


Hedgehog signaling is essential for vertebrate development, however, less is known about the negative regulators that influence this pathway during the differentiation of cell fates. Using the mouse P19 embryonal carcinoma cell model, Suppressor of Fused (SUFU), a negative regulator of the Hedgehog pathway, was investigated during retinoic acid-induced neural differentiation. We found Hedgehog signaling was activated in the early phase of neural differentiation and became inactive during terminal differentiation of neurons and astrocytes. SUFU, which regulates signaling at the level of GLI, remained relatively unchanged during the differentiation process, however SUFU loss through CRISPIR-Cas9 gene editing resulted in decreased cell proliferation and ectopic expression of Hedgehog target genes. Interestingly, SUFU-deficient cells were unable to differentiate in the absence of retinoic acid, but when differentiated in its presence they showed delayed and decreased astrocyte differentiation; neuron differentiation did not appear to be affected. Retinoic acid-induced differentiation also caused ectopic activation of Hh target genes in SUFU-deficient cells and while the absence of the GLI3 transcriptional inhibitor suggested the pathway was active, no full-length GLI3 was detected even though the message encoding Gli3 was present. Thus, the study would indicate the proper timing and proportion of glial cell differentiation requires SUFU, and its normal regulation of GLI3 to maintain Hh signaling in an inactive state.

Volume None
Pages None
DOI 10.1101/2021.08.24.457497
Language English
Journal bioRxiv

Full Text