bioRxiv | 2021

Inhibition of HIV-1 immune modulation by small molecules targeting viral Nef-host CD80 interface

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


HIV-1 causes diverse immunomodulatory responses in the host, including the down-regulation of co-stimulatory proteins CD80/86, mediated by HIV-1 protein Nef, blunting T-cell activation. Using a screening cascade of biochemical and cell-based assays, we identified potent small molecules representing three chemical scaffolds namely amino pyrimidine, phenoxy acetamide and bi-aryl heteroaryl carbamate which target the protein-protein interaction interface of CD80/86 and Nef with sub-micromolar potency. These molecules restore CD80/86 surface levels in HIV-1-Nef infected antigen presenting cells and T-cell activation. Nef-CD80 interface and small molecule binding sites were mapped by using computational docking and structural studies, followed by validation by mutational analysis. This analysis resulted in the identification of two key residues, K99 and R111, which were associated with down-modulation of CD80 surface levels by Nef and important for small molecule binding. Targeting these interacting residues disabled Nef-mediated down-modulation of CD80 surface levels, consequently restoring T-cell activation. Thus, we validate a new target, the Nef-CD80/86 protein-protein interaction interface, with a potential to develop new inhibitors to counteract the immunomodulatory consequences of HIV-1.

Volume None
Pages None
DOI 10.1101/2021.09.07.459239
Language English
Journal bioRxiv

Full Text