bioRxiv | 2021

In vivo serial passaging of human-simian immunodeficiency virus clones identifies viral characteristics that enhance persistent viral replication

 
 
 
 
 
 
 
 

Abstract


We previously reported that a human immunodeficiency virus type 1 with a simian immunodeficiency virus vif substitution (HSIV-vifNL4-3) could replicate in pigtailed macaques (PTMs), demonstrating that Vif is a species-specific tropism factor of primate lentiviruses. However, infections did not result in high peak viremia or setpoint plasma viral loads, as observed during SIV infection of PTMs. Here, we characterized variants isolated from one of the original infected animals with CD4 depletion after nearly four years of infection to identify determinants of increased replication fitness. In our studies, we found that the HSIV-vif clones did not express the HIV-1 Vpr protein due to interference from the vpx open reading frame in singly spliced vpr mRNA. To examine whether these viral genes contribute to persistent viral replication, we generated infectious HSIV-vif clones expressing either the HIV-1 Vpr or SIV Vpx protein. And then to determine viral fitness determinants of HSIV-vif, we conducted three rounds of serial in vivo passaging in PTMs, starting with an initial inoculum containing a mixture of CXCR4-tropic (Vpr- HSIV-vifNL4-3 isolated at 196 (C/196) and 200 (C/200) weeks post-infection from a PTM with depressed CD4 counts) and CCR5-tropic HSIV (Vpr+ HSIV-vif derivatives based NL-AD8 and Bru-Yu2 and a Vpx expressing HSIV-vifYu2). Interestingly, all infected PTMs showed peak plasma viremia close to or above 105 copies/ml and persistent viral replication for more than 20 weeks. The passage 3 PTM showed peak viral loads greater than 105 viral RNA copies/ml. Infectious molecular clones (IMCs) recovered from the passage 3 PTM (HSIV-P3 IMCs) included mutations required for HIV-1 Vpr expression and those mutations encoded by the CXCR4-tropic HSIV-vifNL4-3 isolates C/196 and C/200. The data indicate that the biological isolates selected during long-term infection acquired HIV-1 Vpr expression to enhance their replication fitness in PTMs. Further passaging of HSIV-P3 IMCs in vivo may generate pathogenic variants with higher replication capacity, which will be a valuable resource as challenge virus in vaccine and cure studies.

Volume None
Pages None
DOI 10.1101/2021.09.15.460387
Language English
Journal bioRxiv

Full Text