bioRxiv | 2021

The structural basis of huntingtin (Htt) fibril polymorphism, revealed by cryo-EM of exon 1 Htt fibrils

 
 
 
 

Abstract


The lack of detailed insight into the structure of aggregates formed by the huntingtin protein has hampered efforts to develop therapeutics and diagnostics targeting pathology formation in the brain of patients with Huntington’s disease. To address this knowledge gap, we investigated the structural properties of in vitro generated fibrils from exon1 of the huntingtin protein by electron cryo-microscopy and single-particle analysis. We show that wildtype and mutant exon1 of the huntingtin protein form non-helical fibrils with a polygultamine amyloid core composed of β-hairpins with unique characteristics that have not been previously observed with other amyloid filaments. The stacks of β-hairpins form long planar β- sheets (protofilaments) with variable stacking angle and occasional out-of-register state of individual β-hairpins. These features and the propensity of protofilament to undergo lateral association results in a high degree of fibril polymorphism, including fibrils composed of varying numbers of protofilaments. Our results also represent the first direct observation of how the flanking domains are organized around the polyglutamine core of the fibril and provide insight into how they might affect huntingtin fibril structure, polymorphism, and stacking of β-hairpins within its core structure. Removal of the first 17 amino acids at the N-terminus resulted in surprising intra-fibril structural heterogeneity and reduced fibril’s propensity to lateral associations. Overall, this work provides valuable insights that could guide future mechanistic studies to elucidate the sequence and structural determinants of huntingtin aggregation, as well as cryo-EM and structural studies of fibrils derived from huntingtin proteins and other disease-associated polyglutamine-containing proteins.

Volume None
Pages None
DOI 10.1101/2021.09.23.461534
Language English
Journal bioRxiv

Full Text