bioRxiv | 2021

Genome assembly of the tayra (Eira barbara, Mustelidae) and comparative genomic analysis reveal adaptive genetic variation in the subfamily Guloninae

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Species of the mustelid subfamily Guloninae inhabit diverse habitats on multiple continents, and occupy a variety of ecological niches. They differ in feeding ecologies, reproductive strategies and morphological adaptations. To identify candidate loci associated with adaptations to their respective environments, we generated a de novo assembly of the tayra (Eira barbara), the earliest diverging species in the subfamily, and compared this with the genomes available for the wolverine (Gulo gulo) and the sable (Martes zibellina). Our comparative genomic analyses included searching for signs of positive selection, examining changes in gene family sizes, as well as searching for species-specific structural variants (SVs). Among candidate loci that appear to be associated with phenotypic traits, we observed many genes related to diet, body condition and reproduction. For the tayra, which has an atypical gulonine reproductive strategy of aseasonal breeding, we observe species-specific changes in many pregnancy-related genes. For the wolverine, a circumpolar hypercarnivore that must cope with seasonal food scarcity, we observed many specific changes in genes associated with diet and body condition. Despite restricting some of our analyses to single-copy orthologs present in all three study species, we observed many candidate loci that may be linked to species traits related to environment-specific challenges in their respective habitats.

Volume None
Pages None
DOI 10.1101/2021.09.27.461651
Language English
Journal bioRxiv

Full Text