bioRxiv | 2021

Proteome-wide landscape of solubility limits in a bacterial cell

 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Proteins are prone to aggregate when they are expressed above their solubility limits, a phenomenon termed supersaturation. Aggregation may occur as proteins emerge from the ribosome or after they fold and accumulate in the cell, but the relative importance of these two routes remain poorly known. Here, we systematically probed the solubility limits of each Escherichia coli protein upon overexpression using an image-based screen coupled with machine learning. The analysis suggests that competition between folding and aggregation from the unfolded state governs the two aggregation routes. Remarkably, the majority (70%) of insoluble proteins have low supersaturation risks in their unfolded states and rather aggregate after folding. Furthermore, a substantial fraction (∼35%) of the proteome remain soluble at concentrations much higher than those found naturally, indicating a large margin of safety to tolerate gene expression changes. We show that high disorder content and low surface stickiness are major determinants of high solubility and are favored in abundant bacterial proteins. Overall, our proteome-wide study provides empirical insights into the molecular determinants of protein aggregation routes in a bacterial cell.

Volume None
Pages None
DOI 10.1101/2021.10.05.463219
Language English
Journal bioRxiv

Full Text