Archive | 2021

Cellular and Antibody Immunity after COVID-19 Vaccination at >4-Month Follow Up in Immunocompetent and Immunocompromised Subjects

 
 
 
 
 
 
 
 
 
 
 

Abstract


We evaluated post-vaccination immunity after COVID-19 vaccination with serial changes in cellular and antibody responses to the spike protein S, its S2 component which is conserved between SARS-CoV-2 and human coronaviruses, and the S1 component, which is specific to SARS-CoV-2 and also contains its receptor binding domain (RBD). In 21 healthy immunocompetent subjects all of whom demonstrated circulating IgG antibodies 4 months after mRNA1273 or BNT162b vaccination, a) the strength of S-IgG was stable while RBD-IgG declined, b) S2-reactive B-cell frequencies increased progressively (p=0.002) c) S1-reactive CD8+T-cells and CD19+B-cells were undetectable after a transient increase, and d) monocytic and polymorphonuclear myeloid-derived suppressor cells (M-MDSC, PMN-MDSC) increased after the first vaccine dose. Compared with 4-month measurements from immunocompetent subjects, single samples from 20 vaccinated immunocompromised (IC) subjects revealed a) circulating S-IgG and RBD-IgG in 13 (65%) and 9 (45%) subjects, respectively, b) no differences in S2-reactive T- and B-cells, c) undetectable S1-reactive T- and B-cells, and d) fewer S-reactive CD8+T-cells and CD19+B-cells (p<0.05). Among 11 IC recipients who failed to make RBD-IgG, frequencies of PMN-MDSC were significantly higher (p<0.0004) compared with IC or immunocompetent subjects with RBD-IgG. COVID-19 vaccination induces stable antibodies to the spike protein and expands circulating B-cells reactive to the conserved spike protein sequence in immunocompetent subjects. MDSC which are known to suppress T- and B-cells, and which increase after vaccination, may limit post-vaccination responses especially among immunocompromised subjects. Antibody and cellular responses to SARS-CoV-2-specific spike antigenic sequences appear to be less durable.

Volume None
Pages None
DOI 10.1101/2021.10.07.21257459
Language English
Journal None

Full Text