bioRxiv | 2021

Attention please: modeling global and local context in glycan structure-function relationships

 
 
 

Abstract


Glycans are found across the tree of life with remarkable structural diversity enabling critical contributions to diverse biological processes, ranging from facilitating host-pathogen interactions to regulating mitosis & DNA damage repair. While functional motifs within glycan structures are largely responsible for mediating interactions, the contexts in which the motifs are presented can drastically impact these interactions and their downstream effects. Here, we demonstrate the first deep learning method to represent both local and global context in the study of glycan structure-function relationships. Our method, glyBERT, encodes glycans with a branched biochemical language and employs an attention-based deep language model to learn biologically relevant glycan representations focused on the most important components within their global structures. Applying glyBERT to a variety of prediction tasks confirms the value of capturing rich context-dependent patterns in this attention-based model: the same monosaccharides and glycan motifs are represented differently in different contexts and thereby enable improved predictive performance relative to the previous state-of-the-art approaches. Furthermore, glyBERT supports generative exploration of context-dependent glycan structure-function space, moving from one glycan to “nearby” glycans so as to maintain or alter predicted functional properties. In a case study application to altering glycan immunogenicity, this generative process reveals the learned contextual determinants of immunogenicity while yielding both known and novel, realistic glycan structures with altered predicted immunogenicity. In summary, modeling the context dependence of glycan motifs is critical for investigating overall glycan functionality and can enable further exploration of glycan structure-function space to inform new hypotheses and synthetic efforts.

Volume None
Pages None
DOI 10.1101/2021.10.15.464532
Language English
Journal bioRxiv

Full Text