bioRxiv | 2021

Cryo-EM structures of pentameric autoinducer-2 exporter from E. coli reveal its transport mechanism

 
 
 
 
 
 
 
 
 
 
 

Abstract


Bacteria utilize small extracellular molecules to communicate in order to collectively coordinate their behaviors in response to the population density. Autoinducer-2 (AI-2), a universal molecule for both intra- and inter-species communication, is involved in the regulation of biofilm formation, virulence, motility, chemotaxis and antibiotic resistance. While many studies have been devoted to understanding the biosynthesis and sensing of AI-2, very little information is available on its export. The protein TqsA from E. coli, which belongs to a large underexplored membrane transporter family, the AI-2 exporter superfamily, has been shown to export AI-2. Here, we report the cryogenic electron microscopic structures of two AI-2 exporters (TqsA and YdiK) from E. coli at 3.35 Å and 2.80 Å resolutions, respectively. Our structures suggest that the AI-2 exporter exists as a homo-pentameric complex. In silico molecular docking and native mass spectrometry experiments were employed to demonstrate the interaction between AI-2 and TqsA, and the results highlight the functional importance of two helical hairpins in substrate binding. We propose that each monomer works as an independent functional unit utilizing an elevator-type transport mechanism. This study emphasizes the structural distinctiveness of this family of pentameric transporters and provides fundamental insights for the ensuing studies.

Volume None
Pages None
DOI 10.1101/2021.10.20.465058
Language English
Journal bioRxiv

Full Text