bioRxiv | 2019

Drug-target binding quantitatively predicts optimal antibiotic dose levels

 
 
 
 
 
 
 
 

Abstract


Combatting antibiotic resistance will require both new antibiotics and strategies to preserve the effectiveness of existing drugs. Both approaches would benefit from predicting optimal dosing of antibiotics based on drug-target binding parameters that can be measured early in drug development and that can change when bacteria become resistant. This would avoid the currently frequently employed trial-and-error approaches and might reduce the number of antibiotic candidates that fail late in drug development.\n\nHere, we describe a computational model (COMBAT- COmputational Model of Bacterial Antibiotic Target-binding) that leverages accessible biochemical parameters to quantitatively predict antibiotic dose-response relationships. We validate our model with MICs of a range of quinolone antibiotics in clinical isolates demonstrating that antibiotic efficacy can be predicted from drug-target binding (R2 > 0.9). To further challenge our approach, we do not only predict antibiotic efficacy from biochemical parameters, but also do the reverse: estimate the magnitude of changes in drug-target binding based on antibiotic dose-response curves. We experimentally demonstrate that changes in drug-target binding can be predicted from antibiotic dose-response curves with 92-94 % accuracy by exposing bacteria overexpressing target molecules to ciprofloxacin. To test the generality of COMBAT, we apply it to a different antibiotic class, the beta-lactam ampicillin, and can again predict binding parameters from dose-response curves with 90 % accuracy. We then apply COMBAT to predict antibiotic concentrations that can select for resistance due to novel resistance mutations. \n\nOur goal here is dual: First, we address a fundamental biological question and demonstrate that drug-target binding determines bacterial response to antibiotics, although antibiotic action involves many additional effects downstream of drug-target binding. Second, we create a tool that can help accelerate drug development by predicting optimal dosing and preserve the efficacy of existing antibiotics by predicting optimal treatment for possible resistant mutants.

Volume None
Pages 369975
DOI 10.1101/369975
Language English
Journal bioRxiv

Full Text