bioRxiv | 2019

Conformational coupling by trans-phosphorylation in calcium calmodulin dependent kinase II

 
 
 

Abstract


Abstract The calcium calmodulin dependent protein kinase II (CaMKII) is a dodecameric holoenzyme important for encoding memory. Its activation, triggered by binding of calcium calmodulin, persists autonomously after calmodulin dissociation. One (receiver) kinase captures and subsequently phos-phorylates the regulatory domain peptide of a donor kinase forming a chained dimer as a first stage of autonomous activation. Protein dynamics simulations examined the conformational changes triggered by dimer formation and phosphorylation, aimed to provide a molecular rationale for human mutations that result in learning disabilities. Ensembles generated from X-ray crystal structures were characterized by network centrality and community analysis. Mutual information related collective motions to local fragment dynamics encoded with a structural alphabet. Implicit solvent tCONCOORD conformational ensembles revealed the dynamic architecture of Inactive kinase domains was co-opted in the activated dimer but the network hub shifted from the nucleotide binding cleft to the captured peptide. Explicit solvent molecular dynamics (MD) showed nucleotide and substrate binding determinants formed coupled nodes in long-range signal relays between regulatory peptides in the dimer. Strain in the extended captured peptide was balanced by reduced flexibility of the receiver kinase C-lobe core. The relays were organized around a hydrophobic patch between the captured peptide and a key binding helix. The human mutations aligned along the relays. Thus, these mutations could disrupt the allosteric network alternatively, or in addition, to altered binding affinities. Non-binding protein sectors distant from the binding sites mediated the allosteric signalling; providing possible targets for inhibitor design. Phosphorylation of the peptide modulated the dielectric of its binding pocket to strengthen the patch, non-binding sectors, domain interface and temporal correlations between parallel relays. These results provide the molecular details underlying the reported positive kinase coop-erativity to enrich discussion on how autonomous activation by phosphorylation leads to long-term behavioural effects. Author Summary Protein kinases play central roles in intracellular signalling. Auto-phosphorylation by bound nucleotide typically precedes phosphate transfer to multiple substrates. Protein conformational changes are central to kinase function, altering binding affinities to change cellular location and shunt from one signal pathway to another. In the brain, the multi-subunit kinase, CaMKII is activated by calcium calmodulin upon calcium jumps produced by synaptic stimulation. Auto-transphosphorylation of a regulatory peptide enables the kinase to remain activated and mediate long-term behavioural effects after return to basal calcium levels. A database of mutated residues responsible for these effects is difficult to reconcile solely with impaired nucleotide or substrate binding. Therefore, we have computationally generated interaction networks to map the conformational plasticity of the kinase domains where most mutations localize. The network generated from the atomic structure of a phosphorylated dimer resolves protein sectors based on their collective motions. The sectors link nucleotide and substrate binding sites in self-reinforcing relays between regulatory peptides. The self-reinforcement is strengthened by phosphorylation consistent with the reported positive cooperativity of kinase activity with calcium-calmodulin concentration. The network gives a better match with the mutations and, in addition, reveals target sites for drug development.

Volume None
Pages None
DOI 10.1101/524660
Language English
Journal bioRxiv

Full Text