bioRxiv | 2019

Immune-informed mucin hydrogels evade fibrotic foreign body response in vivo

 
 
 
 
 
 
 

Abstract


The immune-mediated foreign body response to biomaterial implants can trigger the formation of insulating fibrotic capsules that can compromise implant function. To address this challenge, we leverage the intrinsic bioactivity of the mucin biopolymer, a heavily glycosylated protein that forms the protective mucus gel covering mucosal epithelia. By using a bioorthogonal inverse electron demand Diels-Alder reaction, we crosslink mucins into implantable hydrogels. We show that mucin hydrogels (Muc-gels) modulate the immune response driving biomaterial-induced fibrosis. Muc-gels did not elicit fibrosis 21 days after implantation in the peritoneal cavity of C57Bl/6 mice, whereas medical-grade alginate hydrogels (Alg-gels) were covered by fibrous tissues. Further, Muc-gels dampened the recruitment of innate and adaptive immune cells to the gel and triggered a pattern of very mild activation marked by a noticeably low expression of the fibrosis-stimulating TGF-β1 cytokine. With this advance in mucin materials, we provide an essential tool to better understand mucin bioactivities and to initiate the development of new mucin-based and mucin-inspired ‘immune-informed’ materials for implantable devices subject to fibrotic encapsulation.

Volume None
Pages None
DOI 10.1101/554865
Language English
Journal bioRxiv

Full Text