bioRxiv | 2019

Comparative Genomics of Six Juglans Species Reveals Patterns of Disease-associated Gene Family Contractions

 
 
 
 
 
 
 
 
 

Abstract


Juglans (walnuts), the most speciose genus in the walnut family (Juglandaceae) represents most of the family’s commercially valuable fruit and wood-producing trees and includes several species used as rootstock in agriculture for their resistance to various abiotic and biotic stressors. We present the full structural and functional genome annotations of six Juglans species and one outgroup within Juglandaceae (Juglans regia, J. cathayensis, J. hindsii, J. microcarpa, J. nigra, J. sigillata and Pterocarya stenoptera) produced using BRAKER2 semi-unsupervised gene prediction pipeline and additional in-house developed tools. For each annotation, gene predictors were trained using 19 tissue-specific J. regia transcriptomes aligned to the genomes. Additional functional evidence and filters were applied to multiexonic and monoexonic putative genes to yield between 27,000 and 44,000 high-confidence gene models per species. Comparison of gene models to the BUSCO embryophyta dataset suggested that, on average, genome annotation completeness was 89.6%. We utilized these high quality annotations to assess gene family evolution within Juglans and among Juglans and selected Eurosid species, which revealed significant contractions in several gene families in J. hindsii including disease resistance-related Wall-associated Kinase (WAK) and Catharanthus roseus Receptor-like Kinase (CrRLK1L) and others involved in abiotic stress response. Finally, we confirmed an ancient whole genome duplication that took place in a common ancestor of Juglandaceae using site substitution comparative analysis. SIGNIFICANCE High-quality full genome annotations for six species of walnut (Juglans) and a wingnut (Pterocarya) outgroup were constructed using semi-unsupervised gene prediction followed by gene model filtering and functional characterization. These annotations represent the most comprehensive set for any hardwood genus to date. Comparative analyses based on the gene models uncovered rapid evolution in multiple gene families related to disease-response and a whole genome duplication in a Juglandaceae common ancestor.

Volume None
Pages None
DOI 10.1101/561738
Language English
Journal bioRxiv

Full Text