bioRxiv | 2019

Arabidopsis S2Lb links AtCOMPASS-like and SDG2 activity in histone H3 Lys-4 trimethylation independently from histone H2B monoubiquitination

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


The functional determinants of histone H3 Lys-4 trimethylation (H3K4me3), their potential dependency on histone H2B monoubiquitination (H2Bub) and their contribution to defining transcriptional regimes are poorly defined in plant systems. Unlike in S. cerevisiae, where a single SET1 protein catalyzes H3 Lys-4 trimethylation as part of COMPASS (COMPlex of proteins ASsociated with Set1), in Arabidopsis thaliana this activity involves multiple histone methyltransferases (HMTs). Among these, the plant-specific SDG2 (SET DOMAIN GROUP2) has a prominent role. We report that SDG2 co-regulates hundreds of genes with SWD2-like b (S2Lb), a plant ortholog of the Swd2 axillary subunit of yeast COMPASS. S2Lb co-purifies with the AtCOMPASS core subunit WDR5 from a high-molecular weight complex, and both S2Lb and SDG2 directly influence H3K4me3 enrichment over highly transcribed genes. S2Lb knockout triggers pleiotropic developmental phenotypes at the vegetative and reproductive stages, including reduced fertility and seed dormancy. Notwithstanding, s2lb seedlings display little transcriptomic defects as compared to the large repertoire of genes targeted by S2Lb, SDG2 or H3 Lys-4 trimethylation, suggesting that H3K4me3 enrichment is important for optimal gene induction during cellular transitions rather than for determining on/off transcriptional status. Moreover, unlike in budding yeast, most of the S2Lb and H3K4me3 genomic distribution does not rely on a trans-histone crosstalk with histone H2B monoubiquitination. Collectively, this study unveils that the evolutionarily conserved COMPASS-like complex has been coopted by the plant-specific SDG2 HMT and mediates H3K4me3 deposition through an H2Bub-independent pathway in Arabidopsis.

Volume None
Pages None
DOI 10.1101/583724
Language English
Journal bioRxiv

Full Text