bioRxiv | 2019

Opposing chromatin remodelers control transcription initiation frequency and start site selection

 
 
 
 
 
 
 
 

Abstract


Precise nucleosome organization at eukaryotic promoters is thought to be generated by multiple chromatin remodeler (CR) enzymes and to affect transcription initiation. Using an integrated analysis of chromatin remodeler binding and nucleosome displacement activity following rapid remodeler depletion, we investigate the interplay between these enzymes and their impact on transcription in budding yeast. We show that many promoters are acted upon by multiple CRs that operate either cooperatively or in opposition to position the key transcription start site-associated +1 nucleosome. Functional assays suggest that +1 nucleosome positioning often reflects a trade-off between maximizing RNA Polymerase II recruitment and minimizing transcription initiation at incorrect sites. Finally, we show that nucleosome movement following CR inactivation usually results from the activity of another CR and that in the absence of any remodeling activity +1 nucleosomes maintain their positions. Our results provide a detailed picture of fundamental mechanisms linking promoter nucleosome architecture to transcription initiation.

Volume None
Pages None
DOI 10.1101/592816
Language English
Journal bioRxiv

Full Text