bioRxiv | 2019

Targeting against HIV/HCV Co-infection using Machine Learning-based multitarget-quantitative structure-activity relationships (mt-QSAR) Methods

 
 
 
 
 

Abstract


Co-infection between HIV-1 and HCV is common today in certain populations. However, treatment of co-infection is full of challenges with special consideration for potential hepatic safety and drug-drug interactions. Multitarget inhibitors with less toxicity may provide a promising therapeutic strategy for HIV/HCV co-infection. However, identification of one molecule acting on multiple targets simultaneously by experimental evaluation is costly and time-consuming. In silico target prediction tools provide more opportunities for the development of multitarget inhibitors. In this study, by combining naive Bayesian (NB) and support vector machine (SVM) algorithms with two types of molecular fingerprints (MACCS and ECFP6), 60 classification models were constructed to predict the active compounds toward 11 HIV-1 targets and 4 HCV targets based on the multitarget-quantitative structure-activity relationships (mt-QSAR). 5-fold cross-validation and test set validation was performed to confirm the performance of 60 classification models. Our results show that 60 mt-QSAR models appeared to have high classification accuracy in terms of ROC-AUC values ranging from 0.83 to 1 with a mean value of 0.97 for HIV-1 models, and ROC-AUC values ranging from 0.84 to 1 with a mean value of 0.96 for HCV. Furthermore, the 60 models were applied to comprehensively predict the potential targets for additional 46 compounds including 27 approved HIV-1 drugs, 10 approved HCV drugs and 9 selected compounds known to be active on one or more targets of HIV-1 or those of HCV. Finally, 18 hits including 7 HIV-1 approved drugs, 4 HCV approved drugs and 7 compounds were predicted to be HIV/HCV co-infection multitarget inhibitors. The reported bioactivity data confirmed that 7 compounds actually interacted with HIV-1 and HCV targets simultaneously with diverse binding affinities. Of those remaining predicted hits and chemical-protein interaction pairs involving the potential ability to suppress HIV/HCV co-infection deserve further investigation by experiments. This investigation shows that the mt-QSAR method is available to predict chemical-protein interaction for discovering multitarget inhibitors and provide a unique perspective on HIV/HCV co-infection treatment.

Volume None
Pages None
DOI 10.1101/605162
Language English
Journal bioRxiv

Full Text