bioRxiv | 2019

Importance of Matrix-dimensionality in Regulating the Bone Marrow Hematopoietic Cells Pool

 
 
 
 
 
 

Abstract


In bone marrow, hematopoietic stem cells (HSCs) and multiple hematopoietic progenitor cells (HPCs) cooperate to differentiate and replenish blood and immune cells. It has long been recognized bone marrow niche parameters interact with hematopoietic stem and progenitor cells (HSPCs) and additional work is required to study niche physical signals controlling cell behavior. Here we presented that important biophysical signals, stiffness and dimensionality, regulating expansion of bone marrow HSPCs. Mice bone marrow derived progenitor cells were cultured in collagen I hydrogel in vitro. We found stiffer 3D matrix promoted the expansion of lineage negative (Lin−) progenitor cells and Lin−Sca-1+c-kit+ (LSK) HSPCs compared to softer hydrogel. Compared with cells cultured in 2D environment, 3D embedded construct had significant advantage on HSPCs expansion, accompanied by increases on myeloid and lymphoid lineage fractions. Bright changes on gene expression were subsequently discovered. According to these data, we concluded that culture matrix dimensionality is an important factor to regulate the behavior of subpopulations in hematopoietic cell pool, which should be considered in attempts to illuminate HSCs fate decision in vitro. Statement of Significance We would like to submit the enclosed manuscript entitled Importance of Niche-dimensionality in Regulating the Bone Marrow Hematopoietic Cells Pool , which we wish to be considered for publication in Biophysical Journal. Studies about the interaction between HSCs and factors provided by their microenvironment is largely focus on pure perspective of biology. But biophysical factors affecting HSC fate and behavior needs to be further explore. Herein we found ex vivo culture dimensionality affected HSPC expansion. Cell surface marker detection and mRNA expression analysis predicted the changes on myeloid and lymphoid lineage fractions. We hope niche physical signals which we identified will be considered to design HSC biomimetic niches in clinical applications. And we believe that our study will make it interesting to general readers. We deeply appreciate your consideration of our manuscript, and we look forward to receiving comments from the reviewers.

Volume None
Pages None
DOI 10.1101/720359
Language English
Journal bioRxiv

Full Text