bioRxiv | 2019

High-throughput and all-solution phase African Swine Fever Virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system

 
 
 
 
 
 
 
 
 
 

Abstract


Here we report the development of a high throughput, all-solution phase, and isothermal detection system to detect African Swine Fever Virus (ASFV). CRISPR-Cas12a programmed with a CRISPR RNA (crRNA) is used to detect ASFV target DNA. Upon ASFV DNA binding, the Cas12a/crRNA/ASFV DNA complex becomes activated and degrades a fluorescent single stranded DNA (ssDNA) reporter present in the assay. We combine this powerful CRISPR-Cas assay with fluorescence-based point-of-care (POC) system we developed for rapid and accurate virus detection. Without nucleic acid amplification, a detection limit of 1 pM is achieved within 2 hrs. In addition, the ternary Cas12a/crRNA/ASFV DNA complex is highly stable at physiological temperature and continues to cleave the ssDNA reporter even after 24 hrs of incubation, resulting in an improvement of the detection limit to 100 fM. We show that this system is very specific and can differentiate nucleic acid targets with closely matched sequences. The high sensitivity and selectivity of our system enables the detection of ASFV in femtomolar range. Importantly, this system features a disposable cartridge and a sensitive custom designed fluorometer, enabling compact, multiplexing, and simple ASFV detection, intended for low resource settings.

Volume None
Pages None
DOI 10.1101/788489
Language English
Journal bioRxiv

Full Text