bioRxiv | 2019

Intercellular adhesion stiffness moderates cell decoupling on stiff substrates

 
 
 
 
 
 

Abstract


The interplay between cell-cell and cell-substrate interactions is complex yet necessary for the formation and well-functioning of tissues. The same mechanosensing mechanisms used by the cell to sense its extracellular matrix, also play a role in intercellular interactions. We used the discrete element method to develop a computational model of a deformable cell that includes subcellular components responsible for mechanosensing. We modeled a cell pair in 3D on a patterned substrate, a simple laboratory setup to study intercellular interactions. We explicitly modeled focal adhesions between the cells and the substrate, and adherens junctions between cells. These mechanosensing adhesions matured; their disassembly rate was dictated by the force they carry. We also modeled stress fibers which bind the discrete adhesions and contract. The mechanosensing fibers strengthened upon stalling and exerted higher forces. Traction exerted on the substrate was used to generate maps displaying the magnitude of the tractions along the cell-substrate interface. Simulated traction maps are compared to experimental maps obtained via traction force microscopy. The model recreates the dependence on substrate stiffness of the tractions’ spatial distribution across the cell-substrate interface, the contractile moment of the cell pair, the intercellular force, and the number of focal adhesions. It also recreates the phenomenon of cell decoupling, in which cells exert forces separately when substrate stiffness increases. More importantly, the model provides viable molecular explanations for decoupling. It shows that the implemented mechanosensing mechanisms are responsible for competition between different fiber-adhesion configurations present in the cell pair. The point at which an increasing substrate stiffness becomes as high as that of the cell-cell interface is the tipping point at which configurations that favor cell-substrate adhesion dominate over those favoring cell-cell adhesion. This competition is responsible for decoupling. Additionally, we learn that extent of decoupling is modulated by adherens junction maturation. Statement of Significance Cells are sensitive to mechanical factors of their extracellular matrix while simultaneously in contact with other cells. This creates complex intercellular interactions that depend on substrate stiffness and play a role in processes such as development and diseases like cardiac arrhythmia, asthma, and cancer. The simplest cell collective system in vitro is a cell pair on a patterned substrate. We developed a computational model of this system which explains the role of molecular adhesions and contractile fibers in the dynamics of cell-cell interactions on substrates with different stiffness. It is one of the first models of a deformable cell collective based on mechanical principles. It recreates cellular decoupling, a phenomenon in which cells exert forces separately, when substrate stiffness increases.

Volume None
Pages None
DOI 10.1101/802520
Language English
Journal bioRxiv

Full Text