bioRxiv | 2019

The Impact of Cross-Species Gene Flow on Species Tree Estimation

 
 
 
 

Abstract


Recent analyses of genomic sequence data suggest cross-species gene flow is common in both plants and animals, posing challenges to species tree inference. We examine the levels of gene flow needed to mislead species tree estimation with three species and either episodic introgressive hybridization or continuous migration between an outgroup and one ingroup species. Several species tree estimation methods are examined, including the majority-vote method based on the most common gene tree topology (with either the true or reconstructed gene trees used), the UPGMA method based on the average sequence distances (or average coalescent times) between species, and the full-likelihood method based on multi-locus sequence data. Our results suggest that the majority-vote method is more robust to gene flow than the UPGMA method and both are more robust than likelihood assuming a multispecies coalescent (MSC) model with no cross-species gene flow. A small amount of introgression or migration can mislead species tree methods if the species diverged through speciation events separated by short time intervals. Estimates of parameters under the MSC with gene flow suggest the Anopheles gambia African mosquito species complex is an example where gene flow greatly impacts species phylogeny.

Volume None
Pages None
DOI 10.1101/820019
Language English
Journal bioRxiv

Full Text