Cold Spring Harbor molecular case studies | 2021

Mechanisms of targeted therapy resistance in a pediatric glioma driven by ETV6-NTRK3 fusion.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Chromosomal rearrangements of the NTRK genes generate kinase fusions that are targetable oncogenic drivers in diverse adult and pediatric malignancies. Despite robust clinical response to targeted NTRK inhibition, the emergence of therapeutic resistance poses a formidable clinical challenge. Here we report the characterization of an ETV6-NTRK3 fusion-driven pediatric glioma that progressed through NTRK-targeted treatments with entrectinib and selitrectinib. Genetic analysis of multifocal recurrent/resistant lesions identified a previously uncharacterized NTRK3 p.G623A and a known p.G623E resistance mutation, in addition to other alterations of potential pathogenic impact. Functional studies employing heterologous reconstitution model systems and patient-derived tumor cell lines establish that NTRK3G623A and NTRK3G623E mutated kinases exhibit reduced sensitivity to entrectinib and selitrectinib, as well as other NTRK inhibitors tested herein. In summary, this genetic analysis of multifocal recurrent/resistant glioma driven by ETV6-NTRK3 fusion captured a cross-section of resistance-associated alterations that, based on in vitro analysis, likely contributed to resistance to targeted therapy and disease progression.

Volume None
Pages None
DOI 10.1101/mcs.a006109
Language English
Journal Cold Spring Harbor molecular case studies

Full Text