Physical Review B | 2019

Negative longitudinal magnetoresistance as a sign of a possible chiral magnetic anomaly in the half-Heusler antiferromagnet DyPdBi

 
 
 

Abstract


Magnetotransport investigation of a half-Heusler antiferromagnet DyPdBi revealed hallmark features of Weyl semimetal: huge negative longitudinal magnetoresistance and planar Hall effect. Both effects have recently been linked to chiral magnetic anomaly - axial charge pumping between Weyl nodes. Magnetoresistance (MR) of single crystals of DyPdBi is very pronounced. In magnetic field longitudinal to electrical current direction it reaches -80% and its relative difference with respect to that measured in transverse field (expressed as anisotropic magnetoresistance) is extremely strong: -60% at 10K and 14 T. The planar Hall effect in DyPdBi depends on temperature and magnetic field in non-monotonous way, which has not been previously reported. We compare magnetoresistance measured with voltage contacts on mid-line of the sample with that measured with contacts on its edge, and show that the role of current-jetting, an extrinsic source of anisotropic negative magnetoresistance, is marginal. We discuss that nature of the compound and sample quality exclude intrinsic sources of negative and anisotropic magnetoresistance other than weak localization and the chiral magnetic anomaly.

Volume 99
Pages 125142
DOI 10.1103/PHYSREVB.99.125142
Language English
Journal Physical Review B

Full Text