Physical Review D | 2021

Quasinormal modes, quasiperiodic oscillations, and the shadow of rotating regular black holes in nonminimally coupled Einstein-Yang-Mills theory

 
 
 
 
 
 

Abstract


In this paper we obtain an effective metric describing a regular and rotating magnetic black hole (BH) solution with a Yang-Mills electromagnetic source in Einstein-Yang-Mills (EYM) theory using the Newman--Janis algorithm via the non-complexification radial coordinate procedure. We then study the BH shadow and the quasinormal modes (QNMs) for massless scalar and electromagnetic fields and the quasiperiodic oscillations (QPOs). To this end, we also study the embedding diagram for the rotating EYM BH. The energy conditions, shadow curvature radius, topology and the dynamical evolution of scalar and electromagnetic perturbations using the time domain integration method are investigated. We show that the shadow radius decreases by increasing the magnetic charge, while the real part of QNMs of scalar and electromagnetic fields increases by increasing the magnetic charge. This result is consistent with the inverse relation between the shadow radius and the real part of QNMs. In addition, we have studied observational constraints on the EYM parameter $\\lambda$ via frequency analysis of QPOs and the EHT data of shadow cast by the M87 central black hole. We also find that the decaying rate of the EYM BH is slower than that of the neutral and ends up with a tail. We argue that the rotating EYM black hole can be distinguished from the Kerr-Newman black hole with a magnetic charge based on the difference between the angular diameters of their shadows.

Volume 103
Pages None
DOI 10.1103/PHYSREVD.103.024013
Language English
Journal Physical Review D

Full Text