Physical Review B | 2021

Edge density of bulk states due to relativity

 
 

Abstract


Boundaries of quantum materials can host a variety of exotic effects such as topologically robust edge states or anyonic quasiparticles. Here, we show that fermionic systems like graphene that admit a low-energy Dirac description can exhibit counterintuitive relativistic effects at their boundaries. As an example, we consider carbon nanotubes and demonstrate that relativistic bulk spinor states can have non-zero charge density on the boundaries, in contrast to the sinusoidal distribution of non-relativistic wavefunctions that are necessarily zero at the boundaries. This unusual property of relativistic spinors is complementary to the linear energy dispersion relation exhibited by Dirac materials and can influence their coupling to leads, transport properties or their response to external fields.

Volume None
Pages None
DOI 10.1103/PhysRevB.104.L081402
Language English
Journal Physical Review B

Full Text