Physical review. E | 2021

Microfluidics of liquid crystals induced by laser radiation.

 
 
 

Abstract


Several scenarios for the formation of hydrodynamic flows in microsized hybrid aligned nematic (HAN) channels, based on the appropriate nonlinear extension of the classical Ericksen-Leslie theory, supplemented by thermomechanical correction of the shear stress and Rayleigh dissipation function, as well as taking into account the entropy balance equation, are analyzed. Detailed numerical simulations were performed to elucidate the role of the heat flux q caused by laser radiation focused on the lower boundary of the equally warmed up the HAN channel containing a monolayer of azobenzene with the possibility of a trans-cis and cis-trans conformational changes in formation of the vortex flow v. It is shown that a thermally excited vortex flow is maintained with motion in a positive sense (clockwise) in the vicinity of the orientation defect at the lower boundary of the HAN channel caused by the trans-cis and cis-trans conformational changes. In the case of the same HAN channel, but without the azobenzene monolayer at the lower boundary, the heat flux q can also produce the vortical flow in the vicinity of the laser spot at the lower boundary, directed in a negative sense (counterclockwise). At that, the second vortex is characterized by a much slower speed than the vortical flow in the first case.

Volume 103 6-1
Pages \n 062702\n
DOI 10.1103/PhysRevE.103.062702
Language English
Journal Physical review. E

Full Text