Physical review letters | 2021

Sudden Collapse of Magnetic Order in Oxygen-Deficient Nickelate Films.

 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Antiferromagnetic order is a common and robust ground state in the parent (undoped) phase of several strongly correlated electron systems. The progressive weakening of antiferromagnetic correlations upon doping paves the way for a variety of emergent many-electron phenomena including unconventional superconductivity, colossal magnetoresistance, and collective charge-spin-orbital ordering. In this study, we explored the use of oxygen stoichiometry as an alternative pathway to modify the coupled magnetic and electronic ground state in the family of rare earth nickelates (RENiO_{3-x}). Using a combination of x-ray spectroscopy and resonant soft x-ray magnetic scattering, we find that, while oxygen vacancies rapidly alter the electronic configuration within the Ni and O orbital manifolds, antiferromagnetic order is remarkably robust to substantial levels of carrier doping, only to suddenly collapse beyond 0.21 e^{-}/Ni without an accompanying structural transition. Our work demonstrates that ordered magnetism in RENiO_{3-x} is mostly insensitive to carrier doping up to significant levels unseen in other transition-metal oxides. The sudden collapse of ordered magnetism upon oxygen removal may provide a new mechanism for solid-state magnetoionic switching and new applications in antiferromagnetic spintronics.

Volume 126 18
Pages \n 187602\n
DOI 10.1103/PhysRevLett.126.187602
Language English
Journal Physical review letters

Full Text