Physical review. E | 2021

First-passage processes and the target-based accumulation of resources.

 

Abstract


A random search for one or more targets in a bounded domain occurs widely in nature, with examples ranging from animal foraging to the transport of vesicles within cells. Most theoretical studies take a searcher-centric viewpoint, focusing on the first passage time (FTP) problem to find a target. This single search-and-capture event then triggers a downstream process or provides the searcher with some resource such as food. In this paper we take a target-centric viewpoint by considering the accumulation of resources in one or more targets due to multiple rounds of search-and-capture events combined with resource degradation; whenever a searcher finds a target it delivers a resource packet to the target, after which it escapes and returns to its initial position. The searcher is then resupplied with cargo and a new search process is initiated after a random delay. It has previously been shown how queuing theory can be used to derive general expressions for the steady-state mean and variance of the resulting resource distributions. Here we apply the theory to some classical FPT problems involving diffusion in simple geometries with absorbing boundaries, including concentric spheres, wedge domains, and branching networks. In each case, we determine how the resulting Fano factor depends on the degradation rate, the delay distribution, and various geometric parameters. We thus establish that the Fano factor can deviate significantly from Poisson statistics and exhibits a nontrivial dependence on model parameters, including nonmonotonicity and crossover behavior. This indicates the nontrivial nature of the higher-order statistics of resource accumulation.

Volume 103 1-1
Pages \n 012101\n
DOI 10.1103/physreve.103.012101
Language English
Journal Physical review. E

Full Text