Assembly Automation | 2021

Robotic industrial automation simulation-optimization for resolving conflict and deadlock

 
 
 

Abstract


\nPurpose\nThe purpose of this study is to investigate the benefits of the turning point layout; a simulation model being applicable for strategic level is designed that compares systems with and without turning points. Specifically, the avoidance of deadlocks and prevention of conflicts is substantial.\n\n\nDesign/methodology/approach\nOptimization process for different layouts and configuration of autonomous guided vehicles (AGVs) are worked out using statistical methods for design parameters. Regression analysis is used to find effective design parameters and analysis of variance is applied for adjusting critical factors. Also, the optimal design is then implemented in a manufacturing system for an industrial automation and the results are reported.\n\n\nFindings\nThe outputs imply the effectiveness of the proposed approach for real industrial cases. This research will combine both simulation-based method and optimization technique to improve the quality of solutions.\n\n\nOriginality/value\nIn AGV systems, the begin-end combinations are usually connected by using a fixed layout, which is not the optimal path. The capability of these configurations is limited and often the conflict of multiple AGVs and deadlock are inevitable. By appearing more flexible layouts and advanced technology, the positioning and dispatching of AGVs increased. A new concept would be to determine each path dynamically. This would use the free paths for AGVs leading to overcome the conflicts and deadlocks.\n

Volume None
Pages None
DOI 10.1108/aa-10-2019-0185
Language English
Journal Assembly Automation

Full Text