IEEE Access | 2019

Texture-and-Shape Based Active Contour Model for Insulator Segmentation

 
 
 
 
 
 

Abstract


Insulator segmentation is a critical step for automatic insulator fault diagnosis in high voltage transmission systems. Existing methods fail to segment insulators when they have a low contrast with the surroundings. Considering the unique shape and texture characteristics of insulators, a texture-and-shape based active contour model is proposed for insulator segmentation. The segmentation is achieved by evolving a curve iteratively by the texture features and shape priors. In the texture-driven curve evolution, a semi-local region descriptor is used to extract the texture features of insulators and a new convex energy functional is defined based on the extracted features with the topology-preserving term. The topology-preserving term keeps the curve’s topology unchanged as the curve topology is determined by the shape template. In the shape-driven curve evolution, the shape context descriptor is used to align the shape template with the current curve. The semantic transformation between the shape template and the current curve is obtained by Procrustes analysis and then adopted to update the current curve to resemble the shape prior. The proposed method is applied to a set of images, and the experimental results confirm the efficacy and effectiveness of the proposed method for segmenting insulators in cluttered backgrounds.

Volume 7
Pages 78706-78714
DOI 10.1109/ACCESS.2019.2922257
Language English
Journal IEEE Access

Full Text