IEEE Access | 2021

Fault Evolution Monitoring of an In-Service Wind Turbine DFIG Using Windowed Scalogram Difference

 
 
 
 
 
 

Abstract


The rapid evolution of wind energy in reducing CO2 emissions worldwide is undeniable, which is, in fact, expected to continue or even increase its impressive yearly capacity growth. In this regard, optimizing operations and maintenance of wind turbines (WTs) and farms is considered to be one of the options for reducing the levelized cost of electricity of wind energy. This can be achieved by developing innovative condition monitoring methods. To this end, the use of the windowed scalogram difference (WSD) algorithm, based on wavelets, is proposed as an alternative solution, combined with current signature analysis (CSA). The electric generator is one of the major contributors to WT failure rates and downtime, and doubly-fed induction generators (DFIGs) are the dominant technology in variable-speed WTs. In the present work, operational data on an in-service WT DFIG are analyzed over a period of eight months, in contrast to the majority of the studies in this field, which rely on laboratory or simulated data. The evolution of the fault, namely rotor mechanical asymmetry, at an early stage, is analyzed and quantified implementing WSD to the stator current signals, supported by the previous diagnosis achieved through CSA. The combination of CSA and WSD shows strong potential for diagnosing and tracking, respectively, incipient faults in in-service WT DFIGs.

Volume 9
Pages 90118-90125
DOI 10.1109/ACCESS.2021.3090473
Language English
Journal IEEE Access

Full Text