IEEE Access | 2021

A Modified Manta Ray Foraging Optimizer for Planning Inverter-Based Photovoltaic With Battery Energy Storage System and Wind Turbine in Distribution Networks

 
 
 
 
 

Abstract


It is widely accepted that the integration of natural sources in distribution networks is becoming more attractive as they are sustainable and nonpolluting. This paper firstly proposes a modified Manta Ray Foraging Optimizer (MMRFO) to enhance the characteristic of MRFO technique. The modified MRFO technique is based on inserting the Simulated Annealing technique into the original MRFO to enhance the exploitation phase which is responsible for finding the promising region in the search area. Secondly, the developed technique is utilized for determining the best sizes and locations of multiple wind turbine (WT) and photovoltaic (PV) units in Radial Distribution System (RDS). The total system loss is taken as single-objective function to be minimized, considering the probabilistic nature of PV and WT output generation with variable load demand. Reactive loss sensitivity factor (QLSF) is utilized for obtaining the candidate locations up to fifty percent of total system buses with the aim of reducing the search space. Battery Energy Storage System (BESS) is used with PV to change it into a dispatchable supply. The changes in system performance by optimally integrating PV and WT alone or together are comprehensively studied. The proposed solution approach is applied for solving the standard IEEE 69 bus RDS. The obtained results demonstrate that installing PV and WT simultaneously achieves superior results than installing PV alone and WT alone in RDS. Further, simultaneous integration of WT and PV with BESS gives better results than simultaneous integration of WT and PV without BESS in RDS. The simulation results prove that the total system losses can be reduced by enabling the reactive power capability of PV inverters. The convergence characteristic shows that the modified MRFO gives the best solutions compared with the original MRFO algorithm.

Volume 9
Pages 91062-91079
DOI 10.1109/ACCESS.2021.3092145
Language English
Journal IEEE Access

Full Text