2021 IEEE 34th Computer Security Foundations Symposium (CSF) | 2021

Verifying Accountability for Unbounded Sets of Participants

 
 

Abstract


Little can be achieved in the design of security protocols without trusting at least some participants. This trust should be justified or, at the very least, subject to examination. One way to strengthen trustworthiness is to hold parties accountable for their actions, as this provides a strong incentive to refrain from malicious behavior. This has led to an increased interest in accountability in the design of security protocols.In this work, we combine the accountability definition of Künnemann, Esiyok, and Backes [21] with the notion of case tests to extend its applicability to protocols with unbounded sets of participants. We propose a general construction of verdict functions and a set of verification conditions that achieve soundness and completeness.Expressing the verification conditions in terms of trace properties allows us to extend TAMARIN—a protocol verification tool— with the ability to analyze and verify accountability properties in a highly automated way. In contrast to prior work, our approach is significantly more flexible and applicable to a wider range of protocols.

Volume None
Pages 1-16
DOI 10.1109/CSF51468.2021.00032
Language English
Journal 2021 IEEE 34th Computer Security Foundations Symposium (CSF)

Full Text