2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) | 2019

Designing a brain computer interface for control of an assistive robotic manipulator using steady state visually evoked potentials

 
 
 
 
 

Abstract


An assistive robotic manipulator (ARM) can provide independence and improve the quality of life for patients suffering from tetraplegia. However, to properly control such device to a satisfactory level without any motor functions requires a very high performing brain-computer interface (BCI). Steady-state visual evoked potentials (SSVEP) based BCI are among the best performing. Thus, this study investigates the design of a system for a full workspace control of a 7 degrees of freedom ARM. A SSVEP signal is elicited by observing a visual stimulus flickering at a specific frequency and phase. This study investigates the best combination of unique frequencies and phases to provide a 16-target BCI by testing three different systems off line. Furthermore, a fourth system is developed to investigate the impact of the stimulating monitor refresh rate. Experiments conducted on two subjects suggest that a 16-target BCI created by four unique frequencies and 16-unique phases provide the best performance. Subject 1 reaches a maximum estimated ITR of 235 bits/min while subject 2 reaches 140 bits/min. The findings suggest that the optimal SSVEP stimuli to generate 16 targets are a low number of frequencies and a high number of unique phases. Moreover, the findings do not suggest any need for considering the monitor refresh rate if stimuli are modulated using a sinusoidal signal sampled at the refresh rate.

Volume None
Pages 1067-1072
DOI 10.1109/ICORR.2019.8779376
Language English
Journal 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)

Full Text