IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2019

Automatic 3-D Reconstruction of Indoor Environment With Mobile Laser Scanning Point Clouds

 
 
 
 
 
 

Abstract


Three-dimensional (3-D) modeling of indoor environment plays an important role in various applications such as indoor navigation, Building Information Modeling (BIM), interactive visualization, etc. While automated reconstruction of 3-D models from point clouds is receiving more and more attention. Indoor modeling remains a challenging task in terms of dealing with the complexity of indoor environment, the level of automation and restrictions of input data. To address these issues, an automatic indoor reconstruction method that quickly and effectively reconstructs indoor environment of multi-floors and multi-rooms using both point clouds and trajectories from mobile laser scanning (MLS) is proposed. The proposed automatic method of parametric structure modeling comprises three steps. First, structural elements, such as doors, windows, walls, floors, and ceilings, are extracted based on the geometric and semantic features of point clouds. Then, the point clouds are automatically segmented into adjoining rooms through a combination of visibility analysis and physical constraints of the structural elements, which ensures the integrity of the room-space partitions and yields priors for the definition of point cloud label for reconstructed model. Finally, 3-D models of individual rooms are constructed by solving an energy optimization function via multi-label graph cuts. Three benchmark datasets collected by two handheld laser scanning (HLS) and a backpack laser scanning (BLS) system were used to evaluate the proposed method. Experiments demonstrate that the recall and precision of reconstructed surface models obtained by the proposed method are mostly larger than 60%, and the average F1-score of the model is close to 5 cm.

Volume 12
Pages 3117-3130
DOI 10.1109/JSTARS.2019.2918937
Language English
Journal IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

Full Text