IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2021

Multiscale Graph Sample and Aggregate Network With Context-Aware Learning for Hyperspectral Image Classification

 
 
 
 
 

Abstract


Recently, graph convolutional network (GCN) has achieved promising results in hyperspectral image (HSI) classification. However, GCN is a transductive learning method, which is difficult to aggregate the new node. Besides, the existing GCN-based methods divide graph construction and graph classification into two stages ignoring the influence of constructed graph error on classification results. Moreover, the available GCN-based methods fail to understand the global and contextual information of the graph. In this article, we propose a novel multiscale graph sample and aggregate network with a context-aware learning method for HSI classification. The proposed network adopts a multiscale graph sample and aggregate network (graphSAGE) to learn the multiscale features from the local regions graph, which improves the diversity of network input information and effectively solves the impact of original input graph errors on classification. By employing a context-aware mechanism to characterize the importance among spatially neighboring regions, deep contextual and global information of the graph can be learned automatically by focusing on important spatial targets. Meanwhile, the graph structure is reconstructed automatically based on the classified objects as network training, which is able to effectively reduce the influence of the initial graph error on the classification result. Extensive experiments are conducted on three real HSI datasets, which are demonstrated to outperform the compared state-of-the-art methods.

Volume 14
Pages 4561-4572
DOI 10.1109/JSTARS.2021.3074469
Language English
Journal IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

Full Text